Inferring the residual waiting time for binary stationary time series

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inferring the residual waiting time for binary stationary time series

For a binary stationary time series define σn to be the number of consecutive ones up to the first zero encountered after time n, and consider the problem of estimating the conditional distribution and conditional expectation of σn after one has observed the first n outputs. We present a sequence of stopping times and universal estimators for these quantities which are pointwise consistent for ...

متن کامل

Forecasting for stationary binary time series

The forecasting problem for a stationary and ergodic binary time series {Xn}n=0 is to estimate the probability that Xn+1 = 1 based on the observations Xi, 0 ≤ i ≤ n without prior knowledge of the distribution of the process {Xn}. It is known that this is not possible if one estimates at all values of n. We present a simple procedure which will attempt to make such a prediction infinitely often ...

متن کامل

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

Spectral Estimation of Stationary Time Series: Recent Developments

Spectral analysis considers the problem of determining (the art of recovering) the spectral content (i.e., the distribution of power over frequency) of a stationary time series from a finite set of measurements, by means of either nonparametric or parametric techniques. This paper introduces the spectral analysis problem, motivates the definition of power spectral density functions, and reviews...

متن کامل

Guessing the output of a stationary binary time series

The forward prediction problem for a binary time series {X n } ∞ n=0 is to estimate the probability that X n+1 = 1 based on the observations X i , 0 ≤ i ≤ n without prior knowledge of the distribution of the process {X n }. It is known that this is not possible if one estimates at all values of n. We present a simple procedure which will attempt to make such a prediction infinitely often at car...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kybernetika

سال: 2014

ISSN: 0023-5954,1805-949X

DOI: 10.14736/kyb-2014-6-0869